INDIAN SCHOOL AL WADI AL KABIR

DEPARTMENT OF SCIENCE

DATE: 20.09.2021

CLASS: XII

SUBJECT: CHEMISTRY

MAX MARKS: 35 TIME – 1 HR 30 MIN

General Instructions

The paper consists of three sections. Each question carries 1 mark. All questions are compulsory.

Q.NO	QUESTIONS	MARKS
	SECTION A – CASE STUDY QUESTIONS	
	Group 15 includes nitrogen, phosphorus, arsenic, antimony, bismuth and moscovium. The valence shell electronic configuration of these elements is $ns^2 np^3$. Nitrogen and phosphorus are non-metals, arsenic and antimony metalloids, bismuth and moscovium are typical metals. All the elements of Group 15 form hydrides of the type EH ₃ where E = N, P, As, Sb or Bi. The hydrides show regular gradation in their properties. Nitrogen differs from the rest of the members of this group. Some important compounds of Group 5 are NH ₃ ,HNO ₃ etc.	
1	The group 15 hydride which has the highest bond angle is a. NH ₃ b. PH ₃ c. AsH ₂ d. SbH ₂	1
2	The products obtained when Zinc reacts with dilute nitric acid are a. Zn(NO ₃) ₂ , H ₂ O, N ₂ O b. Zn(NO ₃) ₂ , H ₂ O, NO ₂ c. Zn(NO ₃) ₂ , H ₂ O, NO d. Zn(NO ₃) ₂ , H ₂ O, N ₂	1
3	Predict the conditions required for the formation of NH ₃ .	1
	a. 200×10^5 K, 700 atm, iron with K ₂ O and Al ₂ O ₃ b. 200×10^5 Pa, 700 K, iron oxide with K ₂ O and Al ₂ O ₃ c. 2 atm, 700 K, Fe ₂ O ₃ d. 200 atm, 200 K, iron with K ₂ O and Al ₂ O ₃	
4	The increase in size from Arsenic to Bismuth is marginal because	1
	a. Bi is less electronegative as compared to Arsenic and antimonyb. Bi has completely filled d orbitals which offer poor shielding effect.c. Bi has completely filled d and f orbitals which offer poor shielding effect.d. The atomic number of Bi is 83.	

5	Choose the incorrect statements.				
	i. BiH ₃ is the strongest reducing agent among the hydrides of group 15 elements.				
	ii. N can form $R_3N=0$ but P cannot form $R_3P=0$.				
	iii. Pentahalides of group 15 are more covalent than trihalides.				
	a. Only I b. Only ii				
	c. Both ii and iii d. i, ii, iii				
	SECTION B – MULTIPLE CHOICE QUESTIONS				
6					
0	If three elements X Y and Z crystallise in a cubic solid with X atoms at the corners	-			
	Y atoms at the cube centre and Z atoms at the faces of the cube, then write the				
	formula of the compound				
	Tornidia of the compound.				
	• VV7				
	$c. XYZ_3$				
	$d. XY_2Z$				
7	Choose the structure of major monohalogen product in the following reaction.	1			
	~				
	$ + Br_2 \longrightarrow$				
	1				
	a. D.				
	Br Br				
	c. d.				
8	The IUPAC name of the ether $CH_2 = CH-CH_2OCH_3$ is	1			
	a. Alkyl methyl ether				
	b. 1-Methoxyprop-2-ene				
	c. 3-Methoxyprop-1-ene				
	d Vinyl dimethyl ether				
9	In nucleic acids, the individual nucleotides are linked through	1			
	In nucleic uclus, the marviaturi nucleotides are iniked unough	1			
	a pentide linkage h phosphodiostar linkage				
	a. peptide linkage d. hydrogen bonds				
	c. annue mikage u. nyurogen bonus				
1					

10	 The formation of O₂⁺[PtF₆]⁻ is the basis for the formation of Xenon fluorides. This is because a. O₂ and Xenon have comparable electronegativities. b. O₂ and Xenon have comparable electron gain enthalpies. c. both O₂ and Xenon are gases d. O₂ and Xenon have comparable ionisation enthalpies. 		
11	A metallic crystal crystallises into a lattice containing a sequence of layers ABABAB Any packing of spheres leaves out voids in the lattice. What percentage by volume of lattice is empty space? a. 74% b. 26% c. 52.4% d. 68%	1	
12	Predict the product(s) (CH3)3CBr + KOHa. (CH3)3CBr + KBr c. (CH3)2C=CH2 + KBr + H2Ob. (CH3)3C-O-CH2CH3 + KBr d. CH3COCH3 + HCHO	1	
13	 Which of the following reagents cannot, be used to oxidise primary alcohols to aldehydes? a. CrO₃ in anhydrous medium b. KMnO₄ in acidic medium c. Pyridinium chlorochromate d. Heat in the presence of Cu at 573 K 	1	
14	 Choose the correct options. i. Curdling of milk is an example of denaturation of proteins. ii. Keratin protein present in hair is a globular protein. iii. The reaction of glucose with Br₂ water indicates the presence of aldehyde functional group. iv. Glycine is the only optically active amino acid. a. Only iv b. i and ii c. i, iii and iv d. i and iii 	1	
15	Among the following molecules, i. XeO ₃ ii. XeOF ₄ iii. XeF ₆ those having same number of lone pairs on Xe are a. i and ii only b. i and iii only c. ii and iii only d. i, ii and iii	1	
16	CCl ₄ molecules are held in the crystal lattice by a. London forces b. dipole-dipole interactions. c. covalent bonds d. coulombic forces	1	

17	How will you bring about the following conversions?				
	Propene to Nitropropane				
	a. Step 1-HBr Step 2- AgNO ₂				
	b. Step 1- HBr, peroxide Step 2- KNO ₂				
	c. Step $1 - HF$ Step $2 - KNO_2$				
	d. Step 1 – HBr. peroxide Step 2 – AgNO ₂				
	a. step 1 HBI, peroxide step 2 Hgr(02				
18	The ether				
	when treated with HI produces				
	a. b.				
	$\langle \rangle \rightarrow I + CH_3O \langle \rangle \rangle$ $\langle \rangle \rightarrow CH_2OH^+I \langle \rangle$				
	c. d.				
	-CH ₂ I+ HO-				
10	The reason for the double balical structure of DNA is the exerction of				
19	a disulphide linkages				
	a. disulplide linkages b. van der Waals forces				
	c. Hydrogen bonds				
	d All of these				
	u. All of these				
20	Which of the following order is not correct for halogens?	1			
20	a. Melting point- $F_2 < Cl_2 < Br_2 < I_2$	1			
	b. Bond dissociation enthalpy - $I_2 < F_2 < Br_2 < Cl_2$				
	c. Electron gain enthalpy $-I < Br < Cl < F$				
	d. Oxidising power - $I_2 < Br_2 < Cl_2 < F_2$				
	a. Ortaising power - $12 \times D12 \times C12 \times 12$				
21	The radius of an atom is 220 pm. If it crystallises in a simple cubic lattice, what is	1			
	the length of the side of the unit cell?				
	a. 110 pm				
	b. 508 pm				
	c. 622.2 pm				
	d. 440 pm				
22	Effect the following conversions	1			
	Conversion Reagent				
	i- Phenol to benzoquinone a. 85% H ₃ PO ₄ , 440 K				
	ii. Propene to propanol b. $Na_2Cr_2O_7$, H_2SO_4				
	iii. Propan-2-ol to propene c. NaBH ₄				
	iv. Propanone to propan-2-ol d. B_2H_6 , H_2O , $3H_2O_2$, OH^-				

	a. i - b, ii - c, iii - a, iv - d b. i - b, ii - d. iii - a, iv - c c. i - c, ii - a. iii - d, iv - b d. i - d, ii - b. iii - a, iv - c	
23	Choose the alcohol which reacts most readily with Lucas reagent. a. CH ₃ CH ₂ CH ₂ OH b. CH ₃ -CH -CH ₃ OH c. $CH_3 - CH_3 - OH - OH - OH - CH_3OH$ d. $CH_3 - CH - CH_2OH$	1
	I CH ₃	
24	 Which of the following analogies is incorrect? a. Ostwald process: HNO₃ ::Deacon's process : Cl₂ b. Bi: Trihalide::N: Pentahalide c. Nitrogen: Diatomic:: Phosphorus: Tetraatomic d. SO₂ : Angular:: BrF₅ : Square pyramidal 	1
25	A metal (atomic mass 50 u) has a body centred cubic crystal structure. The density of metal is 5.96 gcm ⁻³ . Find the volume of the unit cell. a. 27.8×10^{-24} cm ³ b. 2.78×10^{-24} cm ³ c. 27.8×10^{-23} cm ³ d. 278×10^{-23} cm ³	1
26	Which one of the following is not an allylic halide? a. 4-Bromopent-2-ene b. 3-Bromo-2-methylbut-1-ene c. 1-Bromobut-2-ene d. 4-Bromobut-1-ene	1
27	Predict the reagents in the following reaction.	1

Г

	$\begin{array}{c} \overset{OH}{\underset{i}{\mapsto}} & \overset{ONa}{\underset{i}{\mapsto}} & \overset{OH}{\underset{i}{\mapsto}} & \overset{OH}{\underset{i}{\mapsto}} \\ a. i- NaOH, ii - CO_2, iii- H^+\\ b. i- Na, ii - COOH, iii - H^+\\ c. i- NaOH, ii - CO_2, iii- NaOH\\ d. i- NaOH, ii - H_2CO_3, iii- NaOH \end{array}$				
28	Choose the correct statements about nitro phenols. i. o-Nitrophenol is more steam volatile than p-Nitrophenol. ii. o-Nitrophenol is less acidic than phenol.	1			
	iii. 2,4,6-Trinitrophenol is formed when phenol is treated with concentrated nitric acid.iv. A mixture of ortho and para nitro phenol is called picric acid.				
	a. Only i				
	c. Both ii and iv d. Both i and iii				
29	 Which among the following is incorrect? i. Among the hydrides of group 16, H₂O is the most acidic. ii. SF₆ is easily hydrolysed. iii. α- form of sulphur can be converted into β form at 369 K. iv. Bleaching by SO₂ is temporary due to the presence of nascent O. 	1			
	a. i and ivb. i, iii and ivc. ii and iiid. All the above				
30	High concentration of O_3 can be dangerously explosive. Give reason. a. $\Delta S = +ve$ b. $\Delta H = -ve$ c. $\Delta G = -ve$ d. All of the above	1			
	ASSERTION REASON TYPE				
31	Assertion: Crystalline solids are anisotropic in nature Reason: Crystalline solids melt at a sharp and characteristic temperature.	1			
	a. Assertion and Reason are both correct and Reason is the correct explanation of Assertion.				
	b. Assertion and Reason are both correct but Reason is not the correct explanation of Assertion.				
	d. Assertion is wrong but Reason is correct.				
32	Assertion: SN ₂ reactions proceeds with retention of configuration.	1			
	Reason: SN ₂ reactions proceed in a single step.				

	 a. Assertion and Reason are both correct and Reason is the correct explanation of Assertion. b. Assertion and Reason are both correct but Reason is not the correct explanation of Assertion. c. Assertion is correct but Reason is wrong. d. Assertion is wrong but Reason is correct. 	
33	 Assertion: Boiling points of alcohols are greater than ethers of same molecular mass. Reason: Ethers can form intermolecular hydrogen bonding with each other. a. Assertion and Reason are both correct and Reason is the correct explanation of Assertion. b. Assertion and Reason are both correct but Reason is not the correct explanation of Assertion. c. Assertion is correct but Reason is wrong. d. Assertion is wrong but Reason is correct. 	1
34	 Assertion: The melting points and solubility in water of amino acids are generally high and they behave like salts. Reason: In aqueous solution, the carboxyl group can lose a proton and amino group can accept a proton, giving rise to a dipolar ion known as zwitter ion. a. Assertion and Reason are both correct and Reason is the correct explanation of Assertion. b. Assertion and Reason are both correct but Reason is not the correct explanation of Assertion. c. Assertion is correct but Reason is wrong. d. Assertion is wrong but Reason is correct. 	1
35	 Assertion: The melting point of PH₃ is lower than NH₃ but higher than AsH₃. Reason: The electronegativity of P is more than As but lesser than N. a. Assertion and Reason are both correct and Reason is the correct explanation of Assertion. b. Assertion and Reason are both correct but Reason is not the correct explanation of Assertion. c. Assertion is correct but Reason is wrong. d. Assertion is wrong but Reason is correct. 	1

ANSWER KEY

Q.NO	ANSWER	Q.NO	ANSWER	Q.NO	ANSWER
1	a	13	b	25	a
2	a	14	d	26	d
3	b	15	d	27	a
4	с	16	a	28	d
5	b	17	d	29	d
6	с	18	с	30	d
7	a	19	с	31	b
8	с	20	с	32	d
9	b	21	d	33	с
10	d	22	b	34	a
11	b	23	с	35	d
12	с	24	b		

CHECKED BY : HOD - SCIENCE